
MATHEMATICS OF COMPUTATION 
VOLUME 60, NUMBER 201 
JANUARY 1993, PAGES 347-361 

MODIFIED FFTs FOR FUSED MULTIPLY-ADD ARCHITECTURES 

ELLIOT LINZER AND EPHRAIM FEIG 

ABSTRACT. We introduce fast Fourier transform algorithms (FFTs) designed for 
fused multiply-add architectures. We show how to compute a complex discrete 
Fourier transform (DFT) of length n = 2m with ' nm - 9 n +2-9(-1 m real 
multiply-adds. For real input, this algorithm uses 4 nm - 1 n + 3-9 (- 1)m 
real multiply-adds. We also describe efficient multidimensional FFTs. These 
algorithms can be used to compute the DFT of an n x n array of complex data 
using 14 n2M - 4n2 _ n(- 4 + 16 real multiply-adds. For each problem 
studied, the number of multiply-adds that our algorithms use is a record upper 
bound for the number required. 

1. INTRODUCTION 

The discrete Fourier transform of length n (DFT(n)) of a complex vector 
x= (xo, xI, ., l is X= (Xo, X1, ..., Xn-,)t, where 

n-I 

Xk = WkrXr 

r=O 

Wk = exp(-i27rk/n) and i = vZT. 

Since the publication by Cooley and Tukey in 1965 of a fast algorithm for 
computing the DFT [3], many researchers have studied efficient algorithms for 
computing the DFT [6, 2, 12, 17, 4, 14]. These algorithms have come to be 
collectively known as fast Fourier transforms (FFTs). 

When determining the efficiency of an algorithm, one must have a model that 
specifies the cost of various arithmetic operations (and possibly of data move- 
ment as well). Winograd and others studied the DFT from a multiplicative 
complexity point of view, developed algorithms that used only 0(n) multipli- 
cations, and found lower bounds on the number of multiplications required to 
compute DFTs [17, 18, 19, 1]. Other researchers have sought out algorithms 
with reduced numbers of both additions and multiplications [16, 4, 14]. 

Many of today's advanced workstations and signal processors are designed 
for efficient fused multiply-add operations [10]. Here, the primitive operation is 
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a multiply-add, which computes ?a ? bc, where a, b, and c are real numbers. 
On these architectures, a multiply-add, a simple addition, or a simple multipli- 
cation each requires one machine cycle. We will call any of these computations 
an m/a - op, and assign unit cost to each. 

In this paper, we introduce FFT algorithms that use fewer m/a - ops than 
any algorithm previously reported. We study the case when n is a power of 
2 in detail, but our techniques can be used to obtain efficient algorithms for 
other input lengths. We have already used these same techniques to obtain 
algorithms for computing discrete cosine transforms with fewer mr/a - ops than 
traditional algorithms [8]. We are aware of previous work by Ali Mechentel on 
FFTs optimized for multiply-add architectures [9]. 

Our algorithms are closely related to the Cooley-Tukey and split-radix algo- 
rithms, which we discuss in the next section. In ?3, we describe a method for 
converting Cooley-Tukey and split-radix algorithms into algorithms that use as 
many mr/a - ops as the number of real additions used in the original algorithm, 
assuming the original algorithm uses a 2-addition, 4-multiplication algorithm 
for computing complex multiplications. Because it is common in the literature 
to calculate the number of additions used in an algorithm by assuming that a 
3-addition, 3-multiplication algorithm is used for complex multiplications, the 
number of m/a - ops used in the new algorithms will be smaller than some of 
the published numbers of real additions used in the original algorithms. 

A feature of the algorithms that we introduce is that every multiplication 
appears as a genuine multiply-add. The Rader-Brenner FFT [12] shares this 
feature, but still uses more m/a - ops than the most efficient version of our 
algorithms. The multiplicative constants used in our FFTs are all smaller than 
one and, for large n, the smallest multiplicative constants that our algorithms 
use are slightly larger than the smallest constants used in regular FFTs. By 
contrast, the Rader-Brenner FFT uses multiplicative constants that are larger 
than one, and, for large n, the multiplicative constants are so large as to cause 
numerical instabilities [12]. In ?4, we extend our results and derive similar new 
algorithms with identical operation counts and give bounds on the magnitude 
of the coefficients our algorithms use. 

In ?5 we show how the ideas introduced in ?3 can be used to develop efficient 
algorithms for DFTs with real inputs and for multidimensional DFTs. 

2. COOLEY-TUKEY FFTs 

If n is a composite number, then index transforms can be used to simplify 
the computation of the DFT [3, 2]. For n = n1 n2 , we can introduce new indices 
kl,k2,r1,and r2 (O< kj, r1<nj) by k=k1+nlk2, r=r2+n2r1. Then 
we can write 

n2-1 /ni- 

(1) Xk=+nlk2 J Wnr2 wr2kl ( w Xr2+n2rk 

r2=0 r =0 

Equation (1) allows one to compute a DFT(n) by first computing n2DFT(nl)s, 
performing n complex multiplications (by Wn2k ) and then computing 
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n1DFT(n2)s. The constants W,r2kI are called twiddlefactors. If n1 and n2 are 
coprime, then decompositions that are more efficient than (1) can be used [2]. 
FFT algorithms based on (1) are generally called Cooley-Tukey FFTs. 

If n is highly composite, then (1) can be applied recursively. If n = qm 
and we always take n, = q, then the resulting algorithm is called a radix-q 
decimation-in-frequency (DIF) algorithm. If we always take n2 = q, then the 
algorithm is called a radix-q decimation-in-time (DIT) algorithm. 

For the remainder of the paper we consider the case n = 2m for some integer 
m > 1 . The radix-2 DIF equations are 

(n/2)-1 

X2k = S jW~0n2 [ (Xr + Xr+n/2)], 

(2) r=O 

(n/2)-1 
X2k+1 5 UWn/[W2 (Xr-Xr+nl2)] O<k2- 1. 

r=O 

Thus, a DFT(n) can be computed with n complex additions (by additions, 
we mean additions or subtractions), n twiddle factor multiplications, and two 
DFT(n/2)s. If k is a multiple of n/4, then Wnk is called a trivial twiddle 
factor. Multiplication by a trivial twiddle factor can be accomplished by (at 
most) changing the signs and permuting the real and imaginary parts of b. For 
the radix-2 algorithm, n/2 + 2 of the n twiddle factors are trivial. 

If m > 2, a radix-4 decomposition can be used. The radix-4 DIF equations 
are 

(n/4)-1 

X4k = E Wj[Wn?(xr + Xr+n/4 + Xr+n/2 + Xr+3n/4)], 

r=O 

(n/4)- 1 

X4k+ 1 E Wnxr J7[ W4r(Xr - Xr+n/4 -Xr+n/2 + lXr+3n/4)] , 

r=O 

(n/4)-1 

X4k+2 = 5 WnkhW4 2r(Xr -Xr+nl4 + Xr+n/2 - Xr+3n/4) ] 

r=O 

(n/4)-1 

X4k+3 = EI Jkxr[4[3r (Xr + n Xr+n/4 Xr+n/2 - Xr+3n/4)] , 

r=O 
n 

O < k < - _ 1. - 4 

If the 4-point DFTs are computed with a radix-2 algorithm, then, for n > 16, 
the radix-4 decomposition is more efficient than the radix-2 decomposition. 

The DIF split-radix FFT computes the components of X with even indices 
using a radix-2 algorithm, and the components of X with odd indices using a 
radix-4 algorithm [4, 14]. The recursive equations are 



350 ELLIOT LINZER AND EPHRAIM FEIG 

(n/2)-1 

X2k= Wn'2[Wn,(Xr + Xr+n/2)], 2 
r=O 

(n/4)-1 

X4k+ 1 = Ejj Wn4[Wn(Xr4 - iXr+n/4 -Xr+n/2 + iXr+3n/4)], 

(3) r=O 

(n/4)-1 

X4k+3 = Ejj Wnkr[W3r(x + nXr+n/44-nXr+n/2 - iXr+3n/4)], 

r=O 
n 

O < k < - - 1. 
- 4 

Thus, a DFT(n) can be computed with 3n/2 complex additions, (n/2) - 2 
complex multiplications, a DFT(n/2) and two DFT(n/4)s. For n > 32 the 
split-radix decomposition is more efficient than either the radix-2 or radix-4 
Cooley-Tukey FFTs. Among all reported algorithms for computing DFT(2m), 
the split-radix FFT uses the fewest real additions and has the smallest total 
number of real additions and real multiplications. 

From (3), we see that the number of complex additions that the split-radix 
algorithm uses, a,(n), satisfies the recursion 

ac(n) = 3n/2 + ac(n/2) + 2ac(n/4). 

The number of nontrivial complex multiplications, ,uc(n), satisfies 

Ic(n) = n/2 - 2 + Mc(n/2) + 2Mc(n/4). 

With the initial conditions 

ac(2) = 2, ac(4) = 8, yc(2) = yc(4) = O 

we obtain 

(4) ac(n) = nm 

and 

(5) yuc(n) = I nm -n + 1 - 9(1)m. 

Each nontrivial complex multiplication requires four m/a - ops (two mul- 
tiplications and two multiply-adds). A complex sum (or difference) requires 
two m/a - ops. From (4) and (5), the total number of m/a - ops used by a 
split-radix FFT, 7sr(rn), is equal to 

(6) 7(sr(n) = 3Onm - 32n + 4 -4(- )m. 

A flow graph interpretation of the split-radix algorithm for n = 32 is shown in 
Figure 1. 

Any Cooley-Tukey FFT or the split-radix FFT can be thought of as a fac- 
torization of the DFT(n)-matrix, F(n), defined by F(n) = (Wik)7n-k into a 
sequence of sparse matrices. If n = 2m and the DFT(q)s in a radix-q FFT 
are themselves computed with (1), then a DIF algorithm can be written as the 
factorization 
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FIGURE 1. Flow graph for decimation-in-frequency split- 
radix FFT for computing DFT(32). Arrows indicate 
multiplication by -1 . 

The matrix p(n) is the "bit-reversal" matrix; it is a symmetric permutation 
matrix. (See [15, p. 98] for a definition.) The n x n matrices Am,1 (1 - 

0, ... ., m - 1 ) are block-diagonal addition matrices defined by 

(8) Am, - diag(N(2m- ' ) (- 

where 
k ((k) (k) ) 

X27 NW K(k 1(n) j() 
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and 3j p is the Kronecker symbol. The n x n matrices Dm m1 ( 1 m-1) 
are defined by 

Dm, 1 = diag( WK(m m, 0) K(m, I, 1) w[K(m, I, n-1)) 

The particular algorithm used determines (and is determined by) the integer 
function K(m, 1, j). For example, for the radix-2 algorithm, the function 
Kr2(m, 1, j), defined by 

(9) Kr ( 
f 0 if (j mod 2m-l+1) < 2m-1 , 

J 21-1 (j mod 2m-1) otherwise, 

is used for K(m, 1, j). For the split-radix FFT, we use the function 
Ksr(m , 1, j), defined by 

1 ifr(l,r02m-1+l)=0 
and (j mod 2m-1+1) < 32m-1+1 

n/4 if r(l, r 0 2m-1+l) = 0 

and (j mod 2m-1+1) > 32m-1+1 

(10) Ksr(m, 1,]j) = s 21-1(j mod 2m-l) if r(l, r02m-1+1) = 

and (j mod 2m-1+1) < 2m-1 

3.21 1(jmod2m-1) if r(l, r02m-1+l) = 1 
and (j mod 2m-1+1) > 2m-1', 

where 0 is integer division without remainder (j 0 k = (j - (j mod k))/k) 
and the function r(l, p) (1 = 1, 2, ..., m - I and p =0, 1, ..., 21-1 - 1) is 
defined by the recursion 

r(l, O) = O, r(l , p) = 
0 if r(l - 1 5 p o 2) I or (p mod 2) = O, r(l,0)=0, r(l~P)={ 

otherwise. 

(When implementing the split-radix FFT, Duhamel [4] suggests precomputing 
and storing a representation of the function r(l, p) .) 

Each time that (1) is used to break a DFT into smaller DFTs, the 0th twiddle 
factor is simply W? = 1. Thus, we will always have 

(1) K(m , 15h2 m-1) = 0 h =0, 1,...,521 -1. 

Multiplication of a vector by Am m1 requires n complex additions. The com- 
plexity of multiplying a vector by Dm, 1 depends on the particular matrix Dm, " . 
Thus, all of the Cooley-Tukey and related algorithms use exactly nm complex 
additions but differ in the number nontrivial complex multiplications used. 

3. A NEW ALGORITHM 

Cooley-Tukey FFTs and the split-radix FFT use more real additions than 
real multiplications. It is not possible to schedule all of the multiplications 
in these FFTs so that they appear as genuine multiply-adds; some of the real 
multiplications used in the twiddle factor multiplications appear as simple real 
multiplications. Therefore, the number of m/a - ops used will exceed the 
number of real additions. 

In this section, we present a method for converting Cooley-Tukey and split- 
radix algorithms into algorithms with fewer m/a - ops. In the algorithms 
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that we describe, the number of real multiplications will be greater than the 
number of real multiplications used in the original Cooley-Tukey or split radix 
algorithm, but the number of real additions will remain the same. The improved 
efficiency of these algorithms results from the fact that every multiplication will 
appear as a multiply-add. Thus the total number of m/a - ops used will equal 
the number of real additions used in the original Cooley-Tukey or split-radix 
algorithm. 

Consider the multiplication of a twiddle factor, Wnk, by a complex number. 
If WHk is not a trivial twiddle factor, then this multiplication done in the obvious 
way uses two multiplies and two multiply-adds, for a total of four m/a - ops. 
Now let us define 

(12) an,k= max(I cos(27k/n)l, I sin(27rk/n)l) 

and 

(13) Wnk = Wnk/an k. 

Either the real or imaginary part of WnK has absolute value 1, and therefore we 
can multiply a complex number by Wnk using only two m/a - ops. 

We will begin with the modified radix-2 algorithm for computing DFT(n). 
Our derivation is based on (2). Using (13), we can write 

n/2-1 

X2k= Z (Xr + Xr+n/2)WnJ2, 

(14) r=O 
n/2-1 

X2k+1 = Z [(Xr - Xr+n/2)W]nr,an)rWn2. 
r=O 

Thus, the even outputs are computed with n/2 complex additions and one 
DFT(n), whereas the odd outputs are computed with n/2 complex additions, 
multiplications by n/2-2 nontrivial scaled twiddle factors, Wnr, and a problem 
of size n/2. The problem of size n/2 does not use the DFT(n/2) kernel, 

n/2 , but rather a scaled DFT(n/2) kernel, an, r n12, where an,r is defined 
through ( 12). This second type of problem is a particular instance of a problem 
of the type 

p-l 

r=O 

where 8p,,r are real numbers that satisfy 0 < 8p, r < 1 and flp, p/2 = /p,O = 1. 
We compute the DFT(n/2) by recursively applying the decomposition (14), 
and we compute (15) via 

p/2-1 
r 13p, r+p/2 Wk/2rp7 

Y2k+ I 2p,r 
y r + 12 Yr+P/2) ipr Wp/2 v 

O 16p/2-r - A p/2,r 

(16) = p/2-i ____ - kf=l0, p+2/-y1 
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where flp/2,r = max(flp,r, flp,r+p/2) and fl1/2 r = lp/2 ,rap, r. Note that either 

/3p,r - 

1 or 
flp, r+p/2 1. 

1p/2, r lp/2, r 

We can therefore perform one computation of the form given by (15) by per- 
forming p real/complex multiply-adds (that is, computations of the form ?a ? 
bc, where a, C E F and b E 91), p/2 - 2 multiplications by scaled twid- 
dle factors, wpr, and two half-size problems of the form given by (15). A 
real/complex multiply-add takes only as many m/a - ops (i.e., two) as does 
a complex addition. Step by step, the new radix-2 DIF algorithm is obtained. 
Because 

(17) l8'p,p/2 = 18p,0 = 1, 

the last stage of the new algorithm involves only two-point DFTs. Therefore, 
for the modified radix-2 algorithm we have replaced all of the multiplications by 
twiddle factors with multiplications by scaled twiddle factors and some complex 
additions by real/complex multiply-adds. Thus the total number of m/a - ops 
used is equal the number of real additions used in the original radix-2 DIF 
algorithm. 

This same procedure can be used to derive the modified radix-4 and split- 
radix algorithms. But rather than derive these algorithms directly, we will show 
how the modified algorithms can be obtained from (7). We will then at once 
obtain modified algorithms for any size radix. Also, the approach will be ap- 
plicable to any fast transform algorithm based on a factorization similar to (7) 
(e.g., our work on discrete cosine transforms [8]). 

For a matrix S E Fnfn and an integer i E {0, ..., n - 1}, define 

(18) q(S,j)= max {max(jRe(Sj,k)I, IIm(Sj,k)I)}. 
O<k<n-I 

Define the real diagonal matrix Q(S) by 

(19) Q(S) = (q(S, j)3j,k)7 ,k=o. 

If S has no zero rows, then Q(S) is invertible, and we can define 

(20) R(S) = (Q(S))-1S. 

The idea behind the new algorithms is that instead of multiplying by a sparse 
matrix S, we multiply by the sparse matrix R(S). The multiplication by Q(S) 
is then absorbed into future computations. If the original algorithm is written 
as the matrix factorization F = M(P) M(P-1) . M(, then the new algorithm 
can be represented as the matrix factorization 

(21) F = Q(L(P) )4/(P)41f(P- 1) ././.(0), 

where 

(22) L(-) = MM L(j) = M(')Q(L(-1)), 1 < i < p, 

and 

(23) 4(j) = R(L(A)), 0 < j< p. 
Because Q(L(j-')) is a real diagonal matrix, L(j) and M(j) have the same 

"structure" in the following sense: an element of L(j) is real (or imaginary, or 
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zero) if and only if the corresponding element of M(j) is real (or imaginary, or 
zero). Because XN(j) = R(L(')), X(j) also has the same structure as M( . The 
number of additions required to compute the product of a matrix and a vector 
(in the obvious manner) depends only on the structure of the matrix. If S is 
a real matrix or a diagonal matrix, then computing the product of R(S) and a 
vector requires only as many m/a - ops as the number of additions required to 
compute the product of S and a vector. If we rewrite (7) in the form of (21), 
an algorithm based on the new factorization will require as many m/a - ops 
as the number of additions required by the original algorithm plus up to 2n 
m/a - ops for multiplication by the real diagonal matrix Q(L(P)). 

To be specific, let 

(24) Em, =R(Dml ) 1 ,, I......... , m-1, 
(25) Gm,l = Q(Am, JQ(Dm, 1)), 

(26) Glm2 , r = Q(Am, Q(Dm3, ')Gm, 
1- 

1) = 2 .3... , -1 , 

(27) Bm, 1 = R(Am lQ(Dm 1)) 

and 

(28) Bm l = R(Am- Q(Dm')Gm,- ) I = 2 , 3 m , 1. 

Then 

(29) F(n) p(n)Gm,m-lBm,m-lEm,m-lBm,m-2Em , m-2.. Bm,l Em,lAm, 

The matrix Gm,m-1 in (29) plays the role of Q(L(P)) in (21). We will 
soon see that Gm m-I = I(n), whence we can conclude that the new algorithms 
defined by (29) use only as many m/a - ops as the number of additions used 
by the original Cooley-Tukey or split-radix algorithm. First, we demonstrate 
some properties about the matrices Gmd. 

Lemma 1. The diagonal elements of (the diagonal matrices) Gm l are in the 
interval (0, 1]. 
Proof. The diagonal elements of Q(Dm l) are in (0, 1]. Thus (8), (19), (25), 
(26), and induction can be used to establish the lemma. 5 

Lemma2. For / = O, 1, ... , m-1 and h = 0, 1, ... , 21+1 -1, the (h2m-1-I)th 
diagonal element of Gm l is equal to 1. 
Proof. Proof is by induction on 1. Equations (8), (11), (19), and (25) can be 
used to show that the theorem holds for 1 = 1. From Lemma 1, we see that 
the diagonal elements of (the diagonal matrices) Q(Dm /)Gm / are bounded in 
absolute value by one. Assume the lemma holds for I - 1 . Then (8), (11), (19), 
and (26) can be used to show that the lemma holds for 1. n 

(Equation (17) is a special case of Lemma 2.) Setting I = m - 1 in Lemma 
2 shows that Gm, m- I I(n). We can now rewrite (29) as 

(30) F(n) = p(n)Bm,m-iEm,m-lBm,m-2Em,m-2 ... Bm, lEm, lAm,O 

A flow graph interpretation of the split-radix version of this algorithm is 
shown in Figure 2 (see next page). 

A comparison of (7) and (30) shows that we have delivered on the promises 
made at the beginning of this section. The diagonal elements of Dm, 1 are the 
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FIGURE 2. Flow graph for the "new" DIF split-radix 
FFT for DFT(32). The constants a, b, c, d, and e 
are defined by a = cos(ir/4), b = cos(ir/8), c = 

cos(1/ 16), d = cos(r/ 16) cos(i/4), and e = 
cos(31I/ 1 6)/ cos(i/ 16). 

twiddle factors, but the diagonal elements of Em '1 are the scaled twiddle factors 
(as defined by (13)), so the ordinary real multiplications needed for the twiddle 
factor multiplications have been eliminated. Bm '1 has the same structure as 
AmX?20. All nonzero elements of Am 1 are equal to ? 1, and at least one element 
of each row of Bm~ '1 is equal to ? 1 . Therefore, computing the product of Am X 
or B' 1 and a complex vector requires 2n r/a - ops, which is the number 
of additions used to compute the product of AX21 and a complex vector. 
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Equations (4) and (5) yield the following upper bound for the number of 
m/a - ops required to compute DFT(n): 

Theorem 1. For n = 2m let 7(new(n) be the number of m/a - ops that the 
split-radix version of the algorithm described above uses to compute DFT(n). 
Then 

(31) 7rnew(n) = 8nm - 16n + 2 -2(-l)m. 

A comparison of (6) and (31) shows that as n tends to infinity the new 
algorithm uses only 80% of the number of operations used by a regular split- 
radix algorithm. For finite n the reduction in complexity is always smaller, but 
it is still significant for reasonably large n. For example, when n = 1024 the 
new algorithm uses 25488 m/a - ops, which is 83.6% of the 30496 m/a - ops 
used by a regular split-radix FFT. 

4. NUMERICAL PROPERTIES AND VARIATIONS 

It is possible to derive algorithms that differ from, but have the same compu- 
tational complexity as, those presented in the last section. Equation (7) shows 
the factorization of a symmetric matrix, F(n), into a sequence of symmetric 
matrices. By transposing the right-hand side of (7), we obtain the DIT factor- 
ization of F(n). By applying the techniques that took (7) to (30) to the DIT 
factorization of F(n), the modified DIT algorithm is obtained. The number 
of m/a - ops used by the modified DIT algorithm is equal to the number of 
m/a - ops used by the modified DIF algorithm. 

It is instructive to derive the modified radix-q DIT algorithm directly. From 
(1), 

/ Xk \ /Enlq-1 wqrkX q 

t\X1kq;:)/q ,J =~F(q)Tq,n,k r=o n qr+l I < k < n/q- 1, 

Xk+n(q-l )/q Er=o Wn Xqr+q-1I 

where 
1n,q,k k ia( , Wk ..k T =diag(1 , Wn ,.* n )- 

Thus, to compute a DFT(n), we first compute q DFT(n/q)s and then perform 
n/q multiplications of the form 

(32) F(q)Tn, q, kX 

where x e &'q. The computation described by (32) is referred to as a decimation- 
in-time butterfly. 

If q = 25, then we can write 

(33) F(q)Tn,q,k = As oDs, lAS, 1 DS,s-lAs,s-lp(q)Tn,q,k 

We can use the techniques of the last section to convert the right-hand side of 
(33) to a factorization of the form (21). We can use (11) and the fact that 
Tn,q,k = 1 to establish the fact that for this new factorization the matrix that 
plays the role of Q(L(P)) in (21) is I(q). Therefore, we can compute a radix-q 
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DIT butterfly with as many m/a - ops as the number of additions used by a 
regular DIT butterfly. 

The DIT versions of our new algorithms have a simpler structure than the 
DIF versions. For the DIT algorithms, we first compute a set of smaller DFTs 
and then perform 0(n) m/a-ops to recover the full-size DFT. By contrast, for 
the DIF versions, after we perform 0(n) m/a - ops, the smaller subproblems 
are not all DFTs (although they have the same complexity as DFTs). This 
simplified structure of the modified DIT algorithms makes it possible to write a 
looped computer program to compute the DFT(2m) for any m. Implementing 
the DIF algorithms would require the use of linear code. We give a detailed 
description of the structure of the DIT versions of our algorithms and discuss 
issues that affect their efficient implementation in [7]. 

Other algorithms that use the same number of m/a - ops as those presented 
in the last section come from noting that the use of the "max" function in (18) 
is not necessary. Indeed, if instead of the function q(S, j) we use a function 
q'(S, j) that satisfies 

q'(S, j)l = Re(Sj,k) or Im(S},k) for some k E {O, ..., n - 1}, 
q'(S, j) $& 0, 

and Lemma 2 is satisfied, the algorithms that result will have the same arithmetic 
complexity as the algorithm described in the last section. 

For reasons of numerical accuracy, it is desirable that the dynamic range of 
the multiplicative constants used in an algorithm be small. Because we use the 
"max" function in (18), we can prove the following theorem about the dynamic 
range of the constants used in the modified FFTs. 

Theorem 2. All of the real multiplicative constants used in (30) have absolute 
value at most 1 . For n > 32 the smallest multiplicative constant is larger than 
the smallest multiplicative constant used in regular Cooley-Tukey or split-radix 
algorithms. 

Moreover, for the split-radix version of (30), the smallest multiplicative con- 
stant used is never smaller than the smallest multiplicative constant used in the 
original algorithm, and, for n > 16, it is larger than the smallest multiplicative 
constant used in the original algorithm. 
Proof. The claims in the theorem made for the split-radix algorithm for n < 32 
can be checked directly. 

For any matrix S with nonzero rows, the real and imaginary parts of the 
elements of the matrix R(S) have absolute value at most equal to one. Because 
each of the factors in (30) can be written as R(S) for some S, it follows that all 
of the multiplicative constants used in the new algorithms have absolute value 
at most one. 

The smallest multiplicative constant used by a Cooley-Tukey or split-radix 
algorithm for DFT(n) is sin(2ir/n). The smallest nonzero real or imaginary 
parts of the elements of Em 1 are at least as large as sin(2ir/n)/ cos(2ir/n) > 
sin(2ir/n). 

Let gm,/ be equal to the smallest diagonal elements of (the real, positive, 
diagonal matrices) Gm 1, and let bm 1 be the absolute value of the smallest 
nonzero element of Bm, 1 . All that remains to be shown is that bm, 1 > sin(2ir/n) 
for n > 32 and 1 = 0, 1, ... , m - 1. The diagonal elements of the diagonal 
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matrices Q(Dm l) are at least as large as 1 /XV. We can therefore use (25) to 
see that 

(34) gm, I > I/A/E. 
Likewise, we can use (26) to see that 

(35) gm,l1 > gm,l-l/2/, 2 < 1<m - I 

From (34) and (35), 

(36) m,l > (1I v2)I I <I1< m- l. 

From (27), 

(37) bm l > 1/ 

Likewise, we can use (28) and (36) to see that 

(38) bm > g7ll/ J2 > (1/v's)1, 2 <1< mr-. 

Recalling that n = 2m, we can use (37) and (38) to see that for n > 32 

sin(27r/n) < (I/I/)m-l < bm, 1I < m- . [ 

5. OTHER DFTs 

A well-known property of the DFT is that when the input sequence is real, the 
output sequence is conjugate symmetric. A real input DFT can be computed 
with fewer arithmetic computations than a complex input DFT. In the case 
of the split-radix DFT, savings in arithmetic computations can be obtained by 
simply eliminating unnecessary computations from the complex input DFT [4]. 
In particular, computations needed for redundant outputs are only performed 
once, real numbers are added together with one, rather than two, real additions, 
and a real number is added to an imaginary number with no arithmetic compu- 
tations. Overall, half of the real multiplications and more than half of the real 
additions used in the original algorithm are eliminated. 

These same methods can be used to reduce the number of m/a - ops used 
in the split-radix version of the algorithm discussed in the last sections. The 
resulting algorithm will use 4 nm - 17 n + 3 - I (1)m m/a - ops. 

The p-dimensional DFT of an array of data of size n1 x n2 x n3 x ... x np 
is defined by 

nl -I n2-1 np-1 
= ~~~ j~k, rijWk2 r2... W kprpXr,. kl 2 ,---kp E nll Wnk22 . r ,r . . . rPr 
r1=0 r2=0 rp=o 

kl e {O, 1, ..., n,- 1}. 

Multidimensional DFTs can be computed in a row-column fashion. The algo- 
rithms derived in ?3 can be used to obtain efficient row-column FFTs. 

More efficient multidimensional DFT algorithms do not use a row-column 
approach. Such algorithms include vector-radix [13] and polynomial-transform 
[11, 5, 1] FFTs. With either vector-radix or polynomial-transform FFTs, the 
techniques of this paper can be used to obtain new algorithms that use as many 
m/a - ops as the original algorithm had real additions. We will concentrate on 
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polynomial-transform based FFTs, which are more efficient than vector-radix 
FFTs. 

Assume that, for each I e {1, 2, ... p}, n1 is a power of 2, and let n = 
max(nl, n2, ... , np). A polynomial-transform FFT maps the computation of 
an n1 x n2 x n3 x * * x np DFT into a set of additions, 3n/2 multiplication of 
a complex vector of size n/2 by the matrix G(nl2), defined by 

G (n12) = Wj(2k+l))nl2-1 

and one p-dimensional DFT of size nI /2 x n2/2 x n3/2 x x np/2. By deriving 
an efficient algorithm to compute G (n2)X, where x e Fn/2, we obtain an effi- 
cient polynomial-transform based algorithm to compute the multidimensional 
DFT. 

Let 

( ) -G(n/2)x and z= ( =F(?n) x 

Yn/2-1 Zn-/ 

where On/2 is the (n/2)-vector of zeros. Then Yk = Z2k+1. To compute y, 
we use the split-radix version of the algorithm described in the last section to 
compute z, but skip all computations needed to compute the even outputs of z 
and use no arithmetic computations for adding a number to zero. The algorithm 
that results allows us to compute G (n2)X with 4nm- i94n - 1(-l)m m/a-ops. 

As an example, consider the computation of the DFT of an n x n array, 
where n = 2m. Using polynomial transforms, we can compute this DFT with 
3n2m+ 5n2 additions, 3n multiplications of vectors by G(n12),and one DFT 
of size n/2 x n/2. If the algorithm that we have just described to multiply 
a vector by G(nl2) is used, then the number of m/a - ops used by the new 
algorithm to compute a DFT of size n x n, Ornew(n, n), satisfies 

unew(n, n) = onew(n/2, n/2) + 2n2m + 6f2+ fln(-1)m. 

With the initial condition Cnew(2, 2) = 16, we obtain an upper bound for the 
number of m/a - ops required to compute the DFT of a square array. 

Theorem 5.1. If n = 2m, then Cnew(n, n) = n n2M - 4n2 _ 4 n(- )m + 6. 
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